29 avril 2007

Synthese entre les theoreme du point fixe de Banach et Kannan(version modulaire)

Le resultat suivant propose une version modulaire d'une

synthese entre les theoremes du point fixe de Banach et

Kannan(voir message 10/9/06).

Theoreme.

Soit E_{rho} un espace modulaire complet,ou le mdulaire

rho verifie la condition delta2. D est un sous-ensemble

rho-ferme de E_{rho}.T est une application (non

necessairement rho-continue) de D dans D verifiant:

Il existe deux constantes :c>1 et k dans (0,1) telles que

rho(c(Tx-Ty))<= k max(rho(x-y),rho(x-Tx),rho(y-Ty)) sur DxD (*)

Alors, T admet un point fixe.

09 avril 2007

Minimisation des fonctions convexes.

On peut citer deux réponses,bien connues,

sur la minimisation des fonctions convexes:

La première. On rappelle la formulation suivante

( peut-etre plus pratique):

Theoreme.

Soit (E,I.I) un espace de Banach reflexif.

A est un sous-ensemble non vide, convexe et ferme de E ;

f:A ----]-\infty,\infty ]est une fonction

convexe,semi-continue--inferieuremet, non-

-identitiquement egal à \infty et telle que:

lim f(x)=\infty
IxI--> \infty

Alors f admet un minimum sur A.

Comme exemple simple f(x)=Ix-aI.(a dans E)

Pour la demonstration de ce resultat,voir

H.Brezis(References 2/2/2007).

La deuxieme.Le resultat suivant generalise un

resulat bien connu, dans la droite

reelle:

Theoreme.

Soit E un espace de Banach quelconque.f est une application convexe

de E dans IR.On suppose qu'il existe un z dans E tel que

d_{+}f(z)=0.

(d_{+}f(z).x=lim [f(z+hx)-f(z)]/h ,
h -->0^{+}

avec z,x dans E et h dans IR)


Alors , f admet un minimum en z.

pour des informations sur d_{+}f(z),

voir R.H.Martin(References 2/2/2007).

Ensuite,on montre aisément l'inégalite:

f(x)>= f(z)+d_{+}f(z).(x-z)

Enfin,remarquons que, si f est strictement convexe,alors,f admet un

minimum unique.

17 mars 2007

Bornage et périodicité des solutions des équations differentielles(d'après Massera)

L'exercice,ci-dessous, présente le premier résultat

dans le fameux article de Massera(1950) ,qui met en

relief,le lien entre l'existence des solutions bornées

et l'existence des solutions périodiques.

Exercice.

On considère l'équation différentielle scalaire suivante:

x'=f(t,x) (*)

ou f est une fonction continue de IR^{+}xIR dans IR,et

p-périodique par rapport a t(p>0).

(c-à-d,pour x dans IR,f(t+p,x)=f(t,x)

pour tout t dans IR^{+}).

On suppose que l'équation(*),verifie les conditions de

l'unicite des solutions par rapport aux conditions

initales.

Soit y une solution de l'équation(*),bornée sur IR^{+}.

i)Montrer que si y(0)=y(p),alors y est p-périodique.

ii)Supposons que y(0)est différent de y(p),par exemple

y(0)< y(p).Montrer que,pour tout t dans [0,p], la suite

{y_{n}(t)=y(t+pn)},est strictement croissante dans IR.

iii)Dans l'espace des fonctions continues ,C([0,p],IR),

muni de la norme sup, démontrer que la suite {y_{n}}

est uniformément convergente vers une solution

p-périodique de l'équation(*).

(Utiliser le théorème d'Ascoli et le théorème de Dini)

06 mars 2007

Formulation modulaire de la version locale paramétrée du theoreme du point fixe de Banach.

Dans les espaces modulaires,le résultat suivant, propose une

généralisation de la version locale paramétrée du principe

de contraction dans les espaces de Banach:

Execice(texte provisoire).

Soient X un ensemble quelconque et (E,rho)un espace modulaire

complet,où le modulaire rho vérifie la propriéte de Fatou

Soit la boule B=B(z,r)={x:rho(x-z) < r}.

T est une application deXxB dans E vérifiant:

Il existe deux constantes ,k dans]0,1[ et p>1, telles que:

rho(p(T(x,y)-T(x,y'))) <= k rho(y-y')

pour tout x dans X et tout (y,y') dans BxB.

On suppose que, pour tout x dans X, rho(q(T(x,z)-z))< r(1-k), où q est

le conjugué de p,c-à-d ,(1/p)+(1/q)=1

Démontrer qu'il existe une application unique f de X dans B telle que :

f(x)= T(x,f(x)) sur X. On suppose de plus que X est un espace modulaire

quelconque (ou espace topologique vérifiant le premier axiome de

dénombrabilité), T est continue par rapport à son premier argument

et rho vérifie la condition delta2.

Démontrer que f est continue sur X.

05 mars 2007

Version locale parametree du theoreme du point fixe de Banach

Exercice

Soient X un ensemble quelconque et E un espace metrique

complet.B est une boule ouverte dans E de centre z et de rayon

r.T est une application de XxB dans E verifiant :

Il existe k dans ]0,1[ tel que d(T(x,y),T(x,y'))\leq k d(y,y')

pour tout x dans X et tout (y,y') dans BxB. On suppose que pour

tout x dans X,d(T(x,z),z)< r(1-k).

Demontrer qu'il existe une application unique f de X dans

B telle que : f(x)= T(x,f(x)), sur X. Si de plus, X est un espace

topologique et T est continue par rapport a son premier argument,

montrer que f est continue sur X.

Preuve:

D'apres la version locale(voir le resultat ci-dessous),pour

chaque x dans X,l'application T(x,.) de B dans E possede

un point fixe unique,note f(x),c-à-d,T(x,f(x))=f(x),ce qui

permet de definir une application f de X dans B.Demontrons

que f est unique;en effet:

Soit g une autre application de X dans B telle que T(x,g(x))=g(x),

alors,pour tout x dans X:

d(f(x),g(x))=d(T(x,f(x)),T(x,g(x)))\leq k d(f(x),g(x))

Ceci entraine que f=g sur X.

pour la continuite de f,soit x,x' dans X,alors,on a :

d(f(x),f(x'))=d(T(x,f(x)),T(x',f(x')))

\leq d(T(x,f(x)),T(x,f(x')))+d(T(x,f(x')),T(x',f(x')))

\leq k d(f(x),f(x'))+d(T(x,f(x')),T(x',f(x')))

De la: d(f(x),f(x'))\leq (1/1-k) d(T(x,f(x')),T(x',(x'))

D'ou la continuite de f en x'

Remarque.

Pour une demonstration directe,dans les espaces de Banach,

de ce resultat,voir[Dieudonne].Rappelons que ce resultat est utlise pour

une demonstration directe du theoreme des fonctions implicites.

voir[Dieudonne]-[Deimling ].

24 février 2007

version locale du theoreme du point fixe de Banach(version modulaire)

Dans les espaces modulaires,le resultat suivant, propose

une généralisation de la version locale du principe de

contraction dans les espaces de Banach.

Execice

Soit (E,rho) un espace modulaire complet, ou le modulaire rho

vérifie la propriéte de Fatou.

Soit la boule B=B(y,r)={x: rho(x-y) est strictement inférieur à r}.

T est une application de B dans E fortement contractante, c-à-d,

il existe deux constantes p,k,avec k dans ]0,1[et p>1

telles que:

rho(p(Tx-Ty))\leq k rho(x-y) sur ExE

On suppose que rho(q(Ty-y)< (1-k) r,ou q est le conjugué de p,

c-à-d,(1/p)+(1/q)=1.Démontrer que T admet un point fixe.

Preuve:

On suit les memes démarches du cas métrique.

Soit r' dans ]0,r[ tel que rho(q(Ty-y)) \leq(1-k)r'<(1-k) r.

Considérons la boule D={x:rho(x-y)\leq r'}.Montrons que D est stable par T;

en effet, pour x dans D,on a:

rho(Tx-y)=rho((p/p)(Tx-Ty)+(q/q)(Ty-y ))

\leq rho(p(Tx-Ty))+rho (q(Ty-y))

\leq kr'+(1-k)r'=r'

Comme rho vérifie la propriéte de Fatou,D est rho- férmé (à vérifier).Par le

théorème2.1 dans[Hanebaly(2005)], T admet un point fixe.


20 février 2007

Version locale du theoreme du point fixe de Banach

Exercice

Soit (E,d) un espace metrique complet.B=B(y,r) est la boule ouverte

de centre y et de rayon r dans E.T est une application de B dans E

k-strictement contractante.Si d(Ty,y)<(1-k)r,montrer que T admet

un point fixe.

(Indication:chercher une boule fermee de centre y,stable par T)

Preuve:

Choisir 0< r'< r tel que d(Ty,y)\leq (1-k)r'<(1-k)r.

Montrons que la boule fermee D={x:d(x,y)\leq r'} est stable par T.

En effet,si x est dans D,alors:

d(Tx,y)\leq d(Tx,Ty)+d(Ty,y)\leq kd(x,y)+(1-k)r'\leq r'.

Comme D est complet,l'existence du point fixe de T suit du principe

de contraction de Banach.