24 février 2007

version locale du theoreme du point fixe de Banach(version modulaire)

Dans les espaces modulaires,le resultat suivant, propose

une généralisation de la version locale du principe de

contraction dans les espaces de Banach.

Execice

Soit (E,rho) un espace modulaire complet, ou le modulaire rho

vérifie la propriéte de Fatou.

Soit la boule B=B(y,r)={x: rho(x-y) est strictement inférieur à r}.

T est une application de B dans E fortement contractante, c-à-d,

il existe deux constantes p,k,avec k dans ]0,1[et p>1

telles que:

rho(p(Tx-Ty))\leq k rho(x-y) sur ExE

On suppose que rho(q(Ty-y)< (1-k) r,ou q est le conjugué de p,

c-à-d,(1/p)+(1/q)=1.Démontrer que T admet un point fixe.

Preuve:

On suit les memes démarches du cas métrique.

Soit r' dans ]0,r[ tel que rho(q(Ty-y)) \leq(1-k)r'<(1-k) r.

Considérons la boule D={x:rho(x-y)\leq r'}.Montrons que D est stable par T;

en effet, pour x dans D,on a:

rho(Tx-y)=rho((p/p)(Tx-Ty)+(q/q)(Ty-y ))

\leq rho(p(Tx-Ty))+rho (q(Ty-y))

\leq kr'+(1-k)r'=r'

Comme rho vérifie la propriéte de Fatou,D est rho- férmé (à vérifier).Par le

théorème2.1 dans[Hanebaly(2005)], T admet un point fixe.


20 février 2007

Version locale du theoreme du point fixe de Banach

Exercice

Soit (E,d) un espace metrique complet.B=B(y,r) est la boule ouverte

de centre y et de rayon r dans E.T est une application de B dans E

k-strictement contractante.Si d(Ty,y)<(1-k)r,montrer que T admet

un point fixe.

(Indication:chercher une boule fermee de centre y,stable par T)

Preuve:

Choisir 0< r'< r tel que d(Ty,y)\leq (1-k)r'<(1-k)r.

Montrons que la boule fermee D={x:d(x,y)\leq r'} est stable par T.

En effet,si x est dans D,alors:

d(Tx,y)\leq d(Tx,Ty)+d(Ty,y)\leq kd(x,y)+(1-k)r'\leq r'.

Comme D est complet,l'existence du point fixe de T suit du principe

de contraction de Banach.

13 février 2007

Probleme ouvert dans la theorie du point fixe(Espaces modulaires)(2)

Le probleme suivant est implicite dans les travaux anterieurs:

Soit (E,\rho) un espace modulaire complet;D est un sous-ensemble

de E \rho-ferme.Soit T une application de D dans D \rho-strictement

contractante,c-a-d,:

Il existe k dans ]0,1[ telle que \rho(Tx-Ty)\leq k \rho(x-y),sur DxD

Alors, T possede-t-elle un point fixe?

Remarque:

Si B est \rho-borne,la reponse est positive et la demonstration est

presque immediate.Si rho verifie la condition delta2, et rho(x-y) est

fini pour tout x,y dans D,le theoreme3.1 [Hanebaly(2005)] propose un resultat.

.Voir aussi Ait taleb-Hanebaly(Message-References)