22 octobre 2007

Equations Integrales( Differentielles) du type Lipschitz et iterations de Picard.

Exercice

On reprend le meme cadre du theoreme1

dans le message du 28/11/2006

Soit (E ,I.I) un espace de Banach reel.

C designe l'espace des fonctions continues

definies sur [0,T]a valeurs dans E.

l'espace C est muni par la norme

sup, notee II.II

Soit K une application continue de [0,T]x[0,T)xE

dans E qui satisfait la condition de Lipschitz:

Il existe L>0 : IK(t,s,x)-K(t,s,y)I<= LIx-yI

pour tout (t,s) dans [0,T]x[0,T],et x,y dans

E. On defini la meme application S

sur C (voir la démonstration du theoreme1) par :

S(x)(t)= f(t)+\int_{0}^{t}K(t,s,x(s))ds;

. ou f est un element fixe dans C et x dans C

i)Verifier que C est stable par S.

ii)pour x,y dans C,montrer que:

II(S^{n}x)-(S^{n}y)II<= [(LT)^{n}/n!] IIx-yII

ii)En deduire que S admet un point fixe unique z dans C.

iii)Montrer que pour chaque x dans C,on a:

IIS^{n}x-zII<=R_{n}ISx-zI

ou R_{n) est une constante à determiner.

iv) Chercher les avantages de cet approche.

(Comparer avec le theoreme1 )
Preuve:

i)evident

ii)Demonstration par recurrence:

pour n=1,c'est évident.Supposons le résultat est

vrai a l'ordre n;alors:

I(S^{n+1}x)(t)-(S^{n+1}y)(t)I

<=\int_{0}^{t} IK(t,s,(S^{n}x)(s))-K(t,s,(S^{n}y)(s))I ds

<= L\int_{0}^{t} I(Sx)(s)-(Sy)(s)Ids

<= \int(L^{n+1} s^{n})/n!)Ix(s)-y(s)I ds

= (Lt)^{n+1}/(n+1)! IIx-yII

En prenant le sup sur [0,T],on obtient:

IIS^{n+1}x-S^{n+1}yII<= (LT)^{n+1}/(n+1)! IIx-yII (*)

ii)En tenant compte de l'inegalite precedente(*),appliquer

l'assertion i)ou l'assertion ii) de l'exercice du message

20/10/2007.

iii)Pour x quelconque dans C,on a:

IIS^{n}x-zII<=sigma(i=0 à l'infini)IIS^{n+i}x-S^{n+i+1}xII

<=R_{n} IIz-SxII

ou R_{n}=Sigma(i=0 à l'infini)[(LT)^{n+i}/(n+i)!]

c'est le reste du developpement en serie de exp(LT).

iv)laisse au lecteur.




(