Exercice
Soient X un ensemble quelconque et E un espace metrique
complet.B est une boule ouverte dans E de centre z et de rayon
r.T est une application de XxB dans E verifiant :
Il existe k dans ]0,1[ tel que d(T(x,y),T(x,y'))\leq k d(y,y')
pour tout x dans X et tout (y,y') dans BxB. On suppose que pour
tout x dans X,d(T(x,z),z)< r(1-k).
Demontrer qu'il existe une application unique f de X dans
B telle que : f(x)= T(x,f(x)), sur X. Si de plus, X est un espace
topologique et T est continue par rapport a son premier argument,
montrer que f est continue sur X.
Preuve:
D'apres la version locale(voir le resultat ci-dessous),pour
chaque x dans X,l'application T(x,.) de B dans E possede
un point fixe unique,note f(x),c-à-d,T(x,f(x))=f(x),ce qui
permet de definir une application f de X dans B.Demontrons
que f est unique;en effet:
Soit g une autre application de X dans B telle que T(x,g(x))=g(x),
alors,pour tout x dans X:
d(f(x),g(x))=d(T(x,f(x)),T(x,g(x)))\leq k d(f(x),g(x))
Ceci entraine que f=g sur X.
pour la continuite de f,soit x,x' dans X,alors,on a :
d(f(x),f(x'))=d(T(x,f(x)),T(x',f(x')))
\leq d(T(x,f(x)),T(x,f(x')))+d(T(x,f(x')),T(x',f(x')))
\leq k d(f(x),f(x'))+d(T(x,f(x')),T(x',f(x')))
De la: d(f(x),f(x'))\leq (1/1-k) d(T(x,f(x')),T(x',(x'))
D'ou la continuite de f en x'
Remarque.
Pour une demonstration directe,dans les espaces de Banach,
de ce resultat,voir[Dieudonne].Rappelons que ce resultat est utlise pour
une demonstration directe du theoreme des fonctions implicites.
voir[Dieudonne]-[Deimling ].
Aucun commentaire:
Enregistrer un commentaire