Dans les espaces modulaires,le résultat suivant, propose une
généralisation de la version locale paramétrée du principe
de contraction dans les espaces de Banach:
Execice(texte provisoire).
Soient X un ensemble quelconque et (E,rho)un espace modulaire
complet,où le modulaire rho vérifie la propriéte de Fatou
Soit la boule B=B(z,r)={x:rho(x-z) < r}.
T est une application deXxB dans E vérifiant:
Il existe deux constantes ,k dans]0,1[ et p>1, telles que:
rho(p(T(x,y)-T(x,y'))) <= k rho(y-y')
pour tout x dans X et tout (y,y') dans BxB.
On suppose que, pour tout x dans X, rho(q(T(x,z)-z))< r(1-k), où q est
le conjugué de p,c-à-d ,(1/p)+(1/q)=1
Démontrer qu'il existe une application unique f de X dans B telle que :
f(x)= T(x,f(x)) sur X. On suppose de plus que X est un espace modulaire
quelconque (ou espace topologique vérifiant le premier axiome de
dénombrabilité), T est continue par rapport à son premier argument
et rho vérifie la condition delta2.
Démontrer que f est continue sur X.
Aucun commentaire:
Enregistrer un commentaire