une généralisation de la version locale du principe de
contraction dans les espaces de Banach.
Execice
Soit (E,rho) un espace modulaire complet, ou le modulaire rho
vérifie la propriéte de Fatou.
Soit la boule B=B(y,r)={x: rho(x-y) est strictement inférieur à r}.
T est une application de B dans E fortement contractante, c-à-d,
il existe deux constantes p,k,avec k dans ]0,1[et p>1
telles que:
rho(p(Tx-Ty))\leq k rho(x-y) sur ExE
On suppose que rho(q(Ty-y)< (1-k) r,ou q est le conjugué de p,
c-à-d,(1/p)+(1/q)=1.Démontrer que T admet un point fixe.
Preuve:
On suit les memes démarches du cas métrique.
Soit r' dans ]0,r[ tel que rho(q(Ty-y)) \leq(1-k)r'<(1-k) r.
Considérons la boule D={x:rho(x-y)\leq r'}.Montrons que D est stable par T;
en effet, pour x dans D,on a:
rho(Tx-y)=rho((p/p)(Tx-Ty)+(q/q)(Ty-y ))
\leq rho(p(Tx-Ty))+rho (q(Ty-y))
\leq kr'+(1-k)r'=r'
Comme rho vérifie la propriéte de Fatou,D est rho- férmé (à vérifier).Par le
théorème2.1 dans[Hanebaly(2005)], T admet un point fixe.
Aucun commentaire:
Enregistrer un commentaire