Introduction.
Soit (E,d) un espace métrique complet.Pbf(E) désigne
toutes les parties bornées et fermées de E.K(E) désigne toutes
les parties compactes de E.On définit sur Pbf(E) la distance
de Hausdorff:
Pour A,B dans Pbf(E),D(A,B)=max( d'(B,A),d'(A,B))
ou d'(B,A)=sup {d(x,A),x dans B} et d'(A,B)=sup {d(x,B),x dans A};
d(x,A)(Resp.d(x,B))dénote la distance de x à A(Resp. B)
On démontre que (Pbf(E),D) et (K(E),D) sont des espaces
métriques complets.
Exercice.
(E,d) désigne un espace métrique complet.Soit un système de
fonctions itérées(ou ISF) sur E,c-à-d,un ensemble
d'applications{f_{i}}(1<=i<=n),telle que chaque f_{i} est
une application k_{i}-strictement contractante de E dans E.
On définit une application F sur K(E) par:
F(A)=U f_{i}(A).
1<=i<=n
i)Vérifier que K(E) est stable par F.
ii)Démontrer que F est k-strictement contractante,ou
k=max(k_{i},i=1,2,...n), de (K(E),D) dans (K(E),D)
En déduire qu'il existe un C unique dans K(E)(appelé Attracteur de l'ISF)
tel que :
C= U f_{i}(C).
1<=i<=n
C est un fractal.
iii)Montrer que pour tout x dans C,F^{p}x converge vers C dans(K(E),D).
iv)Exemples.
a) dans la droite réelle.
Soient f_{1} et f_{2} deux applications de IR dans IR définies par:
f_{1}(x)=(1/3)x et f_{2}(x)=(1/3)x+2/3.
On prend comme valeur initiale C_{0}=[0,1];vérifier que
le point fixe de F,par les itérations F^{n}( C_{0}),est
l'ensemble de Cantor.
b) dans le plan.
Rediger l'exemple précédent dans le plan,et dessiner
les trois premières itérations C_{0},C_{1} et C_{2}.
Bienvenue. Ce site(blog)est consacré à des notes (remarques,exercices,commentaires,...) sur les differents chapitres de l'analyse fonctionnelle nonlineare;en particulier,les théories du point fixe et les équations différentielles.
11 novembre 2007
07 novembre 2007
Solution globale(sur IR) des équations différéntielles du type Lipschitz.
Exercice.
1.Question préliminaire.
Soit (E,I.I) un espace de Banach;CB=C(IR,E) désigne
l'espace des fonctions continues et bornées sur IR et
à valeurs dans E.On sait que CB,muni de la norme
IIxII=sup{Ix(t)I,t dans IR},
est de Banach.Soit c > 0 et considérons l'espace:
CB'=C'(IR,E)
={x:IR--->E ,continue et sup(exp(-cItI)Ix(t)I ,t dans IR) est fini}
oû ItI dénote la valeur absolue de t
Démontrer que CB' ,muni de la norme:
IIIxIII= sup{exp(-cItI)Ix(t)I, t dans IR}
est de Banach et que l'espace CB s'injecte continuement et strictement dans CB'.
2.Soit f une application lipschitzienne de E dans E,c-à-d,:
Il existe k > 0 tel que If(x)-f(y)I<= kIx-yI sur ExE.
Considérons le problème de Cauchy:
x'=f(x) (1) x(0)=x_{0} appartient à E (2).
Pour x dans CB' et t dans IR,soit l'application:
Tx(t)=x_{0}+ Intégrale (0 à t)f(x(s))ds.
i)Montrer que CB' est stable par T.
ii)On prend c>k.Montrer que T est strictement contractante de CB' dans CB'.
En déduire que le problème de Cauchy (1)-(2) admet une
solution unique dans CB'.
1.Question préliminaire.
Soit (E,I.I) un espace de Banach;CB=C(IR,E) désigne
l'espace des fonctions continues et bornées sur IR et
à valeurs dans E.On sait que CB,muni de la norme
IIxII=sup{Ix(t)I,t dans IR},
est de Banach.Soit c > 0 et considérons l'espace:
CB'=C'(IR,E)
={x:IR--->E ,continue et sup(exp(-cItI)Ix(t)I ,t dans IR) est fini}
oû ItI dénote la valeur absolue de t
Démontrer que CB' ,muni de la norme:
IIIxIII= sup{exp(-cItI)Ix(t)I, t dans IR}
est de Banach et que l'espace CB s'injecte continuement et strictement dans CB'.
2.Soit f une application lipschitzienne de E dans E,c-à-d,:
Il existe k > 0 tel que If(x)-f(y)I<= kIx-yI sur ExE.
Considérons le problème de Cauchy:
x'=f(x) (1) x(0)=x_{0} appartient à E (2).
Pour x dans CB' et t dans IR,soit l'application:
Tx(t)=x_{0}+ Intégrale (0 à t)f(x(s))ds.
i)Montrer que CB' est stable par T.
ii)On prend c>k.Montrer que T est strictement contractante de CB' dans CB'.
En déduire que le problème de Cauchy (1)-(2) admet une
solution unique dans CB'.
22 octobre 2007
Equations Integrales( Differentielles) du type Lipschitz et iterations de Picard.
Exercice
On reprend le meme cadre du theoreme1
dans le message du 28/11/2006
Soit (E ,I.I) un espace de Banach reel.
C designe l'espace des fonctions continues
definies sur [0,T]a valeurs dans E.
l'espace C est muni par la norme
sup, notee II.II
Soit K une application continue de [0,T]x[0,T)xE
dans E qui satisfait la condition de Lipschitz:
Il existe L>0 : IK(t,s,x)-K(t,s,y)I<= LIx-yI
pour tout (t,s) dans [0,T]x[0,T],et x,y dans
E. On defini la meme application S
sur C (voir la démonstration du theoreme1) par :
S(x)(t)= f(t)+\int_{0}^{t}K(t,s,x(s))ds;
. ou f est un element fixe dans C et x dans C
i)Verifier que C est stable par S.
ii)pour x,y dans C,montrer que:
II(S^{n}x)-(S^{n}y)II<= [(LT)^{n}/n!] IIx-yII
ii)En deduire que S admet un point fixe unique z dans C.
iii)Montrer que pour chaque x dans C,on a:
IIS^{n}x-zII<=R_{n}ISx-zI
ou R_{n) est une constante à determiner.
iv) Chercher les avantages de cet approche.
(Comparer avec le theoreme1 )
Preuve:
i)evident
ii)Demonstration par recurrence:
pour n=1,c'est évident.Supposons le résultat est
vrai a l'ordre n;alors:
I(S^{n+1}x)(t)-(S^{n+1}y)(t)I
<=\int_{0}^{t} IK(t,s,(S^{n}x)(s))-K(t,s,(S^{n}y)(s))I ds
<= L\int_{0}^{t} I(Sx)(s)-(Sy)(s)Ids
<= \int(L^{n+1} s^{n})/n!)Ix(s)-y(s)I ds
= (Lt)^{n+1}/(n+1)! IIx-yII
En prenant le sup sur [0,T],on obtient:
IIS^{n+1}x-S^{n+1}yII<= (LT)^{n+1}/(n+1)! IIx-yII (*)
ii)En tenant compte de l'inegalite precedente(*),appliquer
l'assertion i)ou l'assertion ii) de l'exercice du message
20/10/2007.
iii)Pour x quelconque dans C,on a:
IIS^{n}x-zII<=sigma(i=0 à l'infini)IIS^{n+i}x-S^{n+i+1}xII
<=R_{n} IIz-SxII
ou R_{n}=Sigma(i=0 à l'infini)[(LT)^{n+i}/(n+i)!]
c'est le reste du developpement en serie de exp(LT).
iv)laisse au lecteur.
(
On reprend le meme cadre du theoreme1
dans le message du 28/11/2006
Soit (E ,I.I) un espace de Banach reel.
C designe l'espace des fonctions continues
definies sur [0,T]a valeurs dans E.
l'espace C est muni par la norme
sup, notee II.II
Soit K une application continue de [0,T]x[0,T)xE
dans E qui satisfait la condition de Lipschitz:
Il existe L>0 : IK(t,s,x)-K(t,s,y)I<= LIx-yI
pour tout (t,s) dans [0,T]x[0,T],et x,y dans
E. On defini la meme application S
sur C (voir la démonstration du theoreme1) par :
S(x)(t)= f(t)+\int_{0}^{t}K(t,s,x(s))ds;
. ou f est un element fixe dans C et x dans C
i)Verifier que C est stable par S.
ii)pour x,y dans C,montrer que:
II(S^{n}x)-(S^{n}y)II<= [(LT)^{n}/n!] IIx-yII
ii)En deduire que S admet un point fixe unique z dans C.
iii)Montrer que pour chaque x dans C,on a:
IIS^{n}x-zII<=R_{n}ISx-zI
ou R_{n) est une constante à determiner.
iv) Chercher les avantages de cet approche.
(Comparer avec le theoreme1 )
Preuve:
i)evident
ii)Demonstration par recurrence:
pour n=1,c'est évident.Supposons le résultat est
vrai a l'ordre n;alors:
I(S^{n+1}x)(t)-(S^{n+1}y)(t)I
<=\int_{0}^{t} IK(t,s,(S^{n}x)(s))-K(t,s,(S^{n}y)(s))I ds
<= L\int_{0}^{t} I(Sx)(s)-(Sy)(s)Ids
<= \int(L^{n+1} s^{n})/n!)Ix(s)-y(s)I ds
= (Lt)^{n+1}/(n+1)! IIx-yII
En prenant le sup sur [0,T],on obtient:
IIS^{n+1}x-S^{n+1}yII<= (LT)^{n+1}/(n+1)! IIx-yII (*)
ii)En tenant compte de l'inegalite precedente(*),appliquer
l'assertion i)ou l'assertion ii) de l'exercice du message
20/10/2007.
iii)Pour x quelconque dans C,on a:
IIS^{n}x-zII<=sigma(i=0 à l'infini)IIS^{n+i}x-S^{n+i+1}xII
<=R_{n} IIz-SxII
ou R_{n}=Sigma(i=0 à l'infini)[(LT)^{n+i}/(n+i)!]
c'est le reste du developpement en serie de exp(LT).
iv)laisse au lecteur.
(
21 septembre 2007
Le theoreme du point fixe de Banach et le domaine invariant(version modulaire)
L'exercice suivant propose une version modulaire(partielle)
du resultat ,bien connu dans les espaces de Banach,
concernant le principe de contraction et le domaine d'invariance.
(voir le message du 29/3/07)
Exercice.
Soit (E,rho) un espace modulaire complet.On suppose que
rho(x-y) est fini sur ExE. T est une application fortement
contractante de E dans E,c-à-d, il existe des constantes c et k telles que
c> 1 , k dans ]0,1[ et
rho(c(Tx-Ty))\leq k rho(x-y) sur ExE.
1) Demontrer que I-T est bijective de E sur E.
2)On suppose de plus que le modulaire
rho verifie la condition delta2.Demontrer que
T est un homeomorphisme de E sur E.
Preuve:
1) Soit l'application S de E dans E,definie par:
Sx=Tx+y,ou y est un element donné dans E.Montrons
que S admet un point fixe unique.En effet,
rho(c(Sx-Sy))=rho(c(Tx-Ty))\leq k rho(x-y)
sur ExE;alors S admet un point fixe
unique(voir Ait taleb-Hanebaly.references.Message 2/2/07))et par
consequent,I-T est inversible de E sur E.
2)Montrons que I-T est rho-continue;en effet,
soit {x(n)} une suite rho-convergente vers x.
posons y(n)=x(n)-Tx(n) et y=x-Tx;et soit c' le
conjugue de c[(1/c)+(1/c')=1]alors:
rho(y(n)-y)=rho((c'/c')(x(n)-x)+(c/c)(Tx-Tx(n))
\leq rho(c'(x(n)-x))+k rho(x(n)-x),
Par dlta2,rho(c'(x(n)-x)) tend vers 0,lorsque n
tend vers l'infini,donc,y(n) tend vers y.
Montrons que (I-T)^{-1} est continue;en effet:
soit {x(n)} une suite rho-convergente vers x.
Posons y(n)=(I-T)^{-1}x(n) et y=(I-T)^{-1}x,donc,
x(n)=y(n)-Ty(n) et x=y-Ty;dela:
rho(y(n)-y)=rho((c'/c')(x(n)-x)+(c/c)(Ty(n)-Ty)))
\leq rho (c'(x(n)-x))+k rho (y(n)-y)
ce qui entraine que:
rho (y(n)-y)\leq (1/1-k) rho(c'(x(n)-x))
Par delta2,le second membre de l'inegalite ci-dessus
tend vers 0,lorsque n tend vers l'infini et y(n) est
rho-convergente vers y,donc, (I-T)^{-1}est rho-continue.
du resultat ,bien connu dans les espaces de Banach,
concernant le principe de contraction et le domaine d'invariance.
(voir le message du 29/3/07)
Exercice.
Soit (E,rho) un espace modulaire complet.On suppose que
rho(x-y) est fini sur ExE. T est une application fortement
contractante de E dans E,c-à-d, il existe des constantes c et k telles que
c> 1 , k dans ]0,1[ et
rho(c(Tx-Ty))\leq k rho(x-y) sur ExE.
1) Demontrer que I-T est bijective de E sur E.
2)On suppose de plus que le modulaire
rho verifie la condition delta2.Demontrer que
T est un homeomorphisme de E sur E.
Preuve:
1) Soit l'application S de E dans E,definie par:
Sx=Tx+y,ou y est un element donné dans E.Montrons
que S admet un point fixe unique.En effet,
rho(c(Sx-Sy))=rho(c(Tx-Ty))\leq k rho(x-y)
sur ExE;alors S admet un point fixe
unique(voir Ait taleb-Hanebaly.references.Message 2/2/07))et par
consequent,I-T est inversible de E sur E.
2)Montrons que I-T est rho-continue;en effet,
soit {x(n)} une suite rho-convergente vers x.
posons y(n)=x(n)-Tx(n) et y=x-Tx;et soit c' le
conjugue de c[(1/c)+(1/c')=1]alors:
rho(y(n)-y)=rho((c'/c')(x(n)-x)+(c/c)(Tx-Tx(n))
\leq rho(c'(x(n)-x))+k rho(x(n)-x),
Par dlta2,rho(c'(x(n)-x)) tend vers 0,lorsque n
tend vers l'infini,donc,y(n) tend vers y.
Montrons que (I-T)^{-1} est continue;en effet:
soit {x(n)} une suite rho-convergente vers x.
Posons y(n)=(I-T)^{-1}x(n) et y=(I-T)^{-1}x,donc,
x(n)=y(n)-Ty(n) et x=y-Ty;dela:
rho(y(n)-y)=rho((c'/c')(x(n)-x)+(c/c)(Ty(n)-Ty)))
\leq rho (c'(x(n)-x))+k rho (y(n)-y)
ce qui entraine que:
rho (y(n)-y)\leq (1/1-k) rho(c'(x(n)-x))
Par delta2,le second membre de l'inegalite ci-dessus
tend vers 0,lorsque n tend vers l'infini et y(n) est
rho-convergente vers y,donc, (I-T)^{-1}est rho-continue.
03 juin 2007
Version modulaire du theoreme du point fixe d'Edelstein.
Introduction:
Rappelons le theoreme du point fixe d'Edelstein(1962)
(cadre metrique):
Theoreme.
Soit(E,d)un espace metrique complet.T est une application
contractive de E dans E.On suppose q'il existe un x dans E
tel que la suite {T^{n}x}possede une sous-suite convergente
vers z.Alors, z est un point fixe unique de T.
Le resultat suivant propose une version modulaire de ce
resultat.Cette formulation a ete introduite dans la these
d'Ait taleb(1996). voir message references.
Exercice.
Soit E(rho) un espace modulaire,ou rho verifie la propriete
de Fatou.K est un sous-ensemble rho-compact de E(rho).T est
une application de K dans K telle que :
rho(Tx-Ty)< rho(x-y) pour tout (x,y) dans KxK avec x different de y
Montrer qu'il existe un z dans K tel que inf{rho(x-Tx);x dans K}
=rho(z-Tz).En deduire que Tz=z.
Preuve:
Soit a=inf{rho(x-Tx);x dans K};alors,il existe une suite minimisante
{x(n)}dans K telle que rho(x(n)-Tx(n))--->a.K etant rho-compact,on peut
extraire de {x(n)} une sous-suite,notee encore {x(n)},rho-convergente
vers z dans K;comme T est contractive, donc,Tx(n)converge
vers Tz.La propriete de Fatou,donne:
rho(z-Tz)<=liminf rho(x(n)-Tx(n))=a.
D'autre part, a<= rho(Tz-T^{2}z)< rho(z-Tz)<=a;
ce qui entraine que a=0 et Tz=z.
Rappelons le theoreme du point fixe d'Edelstein(1962)
(cadre metrique):
Theoreme.
Soit(E,d)un espace metrique complet.T est une application
contractive de E dans E.On suppose q'il existe un x dans E
tel que la suite {T^{n}x}possede une sous-suite convergente
vers z.Alors, z est un point fixe unique de T.
Le resultat suivant propose une version modulaire de ce
resultat.Cette formulation a ete introduite dans la these
d'Ait taleb(1996). voir message references.
Exercice.
Soit E(rho) un espace modulaire,ou rho verifie la propriete
de Fatou.K est un sous-ensemble rho-compact de E(rho).T est
une application de K dans K telle que :
rho(Tx-Ty)< rho(x-y) pour tout (x,y) dans KxK avec x different de y
Montrer qu'il existe un z dans K tel que inf{rho(x-Tx);x dans K}
=rho(z-Tz).En deduire que Tz=z.
Preuve:
Soit a=inf{rho(x-Tx);x dans K};alors,il existe une suite minimisante
{x(n)}dans K telle que rho(x(n)-Tx(n))--->a.K etant rho-compact,on peut
extraire de {x(n)} une sous-suite,notee encore {x(n)},rho-convergente
vers z dans K;comme T est contractive, donc,Tx(n)converge
vers Tz.La propriete de Fatou,donne:
rho(z-Tz)<=liminf rho(x(n)-Tx(n))=a.
D'autre part, a<= rho(Tz-T^{2}z)< rho(z-Tz)<=a;
ce qui entraine que a=0 et Tz=z.
29 avril 2007
Synthese entre les theoreme du point fixe de Banach et Kannan(version modulaire)
Le resultat suivant propose une version modulaire d'une
synthese entre les theoremes du point fixe de Banach et
Kannan(voir message 10/9/06).
Theoreme.
Soit E_{rho} un espace modulaire complet,ou le mdulaire
rho verifie la condition delta2. D est un sous-ensemble
rho-ferme de E_{rho}.T est une application (non
necessairement rho-continue) de D dans D verifiant:
Il existe deux constantes :c>1 et k dans (0,1) telles que
rho(c(Tx-Ty))<= k max(rho(x-y),rho(x-Tx),rho(y-Ty)) sur DxD (*)
Alors, T admet un point fixe.
synthese entre les theoremes du point fixe de Banach et
Kannan(voir message 10/9/06).
Theoreme.
Soit E_{rho} un espace modulaire complet,ou le mdulaire
rho verifie la condition delta2. D est un sous-ensemble
rho-ferme de E_{rho}.T est une application (non
necessairement rho-continue) de D dans D verifiant:
Il existe deux constantes :c>1 et k dans (0,1) telles que
rho(c(Tx-Ty))<= k max(rho(x-y),rho(x-Tx),rho(y-Ty)) sur DxD (*)
Alors, T admet un point fixe.
09 avril 2007
Minimisation des fonctions convexes.
On peut citer deux réponses,bien connues,
sur la minimisation des fonctions convexes:
La première. On rappelle la formulation suivante
( peut-etre plus pratique):
Theoreme.
Soit (E,I.I) un espace de Banach reflexif.
A est un sous-ensemble non vide, convexe et ferme de E ;
f:A ----]-\infty,\infty ]est une fonction
convexe,semi-continue--inferieuremet, non-
-identitiquement egal à \infty et telle que:
lim f(x)=\infty
IxI--> \infty
Alors f admet un minimum sur A.
Comme exemple simple f(x)=Ix-aI.(a dans E)
Pour la demonstration de ce resultat,voir
H.Brezis(References 2/2/2007).
La deuxieme.Le resultat suivant generalise un
resulat bien connu, dans la droite
reelle:
Theoreme.
Soit E un espace de Banach quelconque.f est une application convexe
de E dans IR.On suppose qu'il existe un z dans E tel que
d_{+}f(z)=0.
(d_{+}f(z).x=lim [f(z+hx)-f(z)]/h ,
h -->0^{+}
avec z,x dans E et h dans IR)
Alors , f admet un minimum en z.
pour des informations sur d_{+}f(z),
voir R.H.Martin(References 2/2/2007).
Ensuite,on montre aisément l'inégalite:
f(x)>= f(z)+d_{+}f(z).(x-z)
Enfin,remarquons que, si f est strictement convexe,alors,f admet un
minimum unique.
sur la minimisation des fonctions convexes:
La première. On rappelle la formulation suivante
( peut-etre plus pratique):
Theoreme.
Soit (E,I.I) un espace de Banach reflexif.
A est un sous-ensemble non vide, convexe et ferme de E ;
f:A ----]-\infty,\infty ]est une fonction
convexe,semi-continue--inferieuremet, non-
-identitiquement egal à \infty et telle que:
lim f(x)=\infty
IxI--> \infty
Alors f admet un minimum sur A.
Comme exemple simple f(x)=Ix-aI.(a dans E)
Pour la demonstration de ce resultat,voir
H.Brezis(References 2/2/2007).
La deuxieme.Le resultat suivant generalise un
resulat bien connu, dans la droite
reelle:
Theoreme.
Soit E un espace de Banach quelconque.f est une application convexe
de E dans IR.On suppose qu'il existe un z dans E tel que
d_{+}f(z)=0.
(d_{+}f(z).x=lim [f(z+hx)-f(z)]/h ,
h -->0^{+}
avec z,x dans E et h dans IR)
Alors , f admet un minimum en z.
pour des informations sur d_{+}f(z),
voir R.H.Martin(References 2/2/2007).
Ensuite,on montre aisément l'inégalite:
f(x)>= f(z)+d_{+}f(z).(x-z)
Enfin,remarquons que, si f est strictement convexe,alors,f admet un
minimum unique.
Inscription à :
Articles (Atom)