L'exercice suivant propose une version modulaire(partielle)
du resultat ,bien connu dans les espaces de Banach,
concernant le principe de contraction et le domaine d'invariance.
(voir le message du 29/3/07)
Exercice.
Soit (E,rho) un espace modulaire complet.On suppose que
rho(x-y) est fini sur ExE. T est une application fortement
contractante de E dans E,c-à-d, il existe des constantes c et k telles que
c> 1 , k dans ]0,1[ et
rho(c(Tx-Ty))\leq k rho(x-y) sur ExE.
1) Demontrer que I-T est bijective de E sur E.
2)On suppose de plus que le modulaire
rho verifie la condition delta2.Demontrer que
T est un homeomorphisme de E sur E.
Preuve:
1) Soit l'application S de E dans E,definie par:
Sx=Tx+y,ou y est un element donné dans E.Montrons
que S admet un point fixe unique.En effet,
rho(c(Sx-Sy))=rho(c(Tx-Ty))\leq k rho(x-y)
sur ExE;alors S admet un point fixe
unique(voir Ait taleb-Hanebaly.references.Message 2/2/07))et par
consequent,I-T est inversible de E sur E.
2)Montrons que I-T est rho-continue;en effet,
soit {x(n)} une suite rho-convergente vers x.
posons y(n)=x(n)-Tx(n) et y=x-Tx;et soit c' le
conjugue de c[(1/c)+(1/c')=1]alors:
rho(y(n)-y)=rho((c'/c')(x(n)-x)+(c/c)(Tx-Tx(n))
\leq rho(c'(x(n)-x))+k rho(x(n)-x),
Par dlta2,rho(c'(x(n)-x)) tend vers 0,lorsque n
tend vers l'infini,donc,y(n) tend vers y.
Montrons que (I-T)^{-1} est continue;en effet:
soit {x(n)} une suite rho-convergente vers x.
Posons y(n)=(I-T)^{-1}x(n) et y=(I-T)^{-1}x,donc,
x(n)=y(n)-Ty(n) et x=y-Ty;dela:
rho(y(n)-y)=rho((c'/c')(x(n)-x)+(c/c)(Ty(n)-Ty)))
\leq rho (c'(x(n)-x))+k rho (y(n)-y)
ce qui entraine que:
rho (y(n)-y)\leq (1/1-k) rho(c'(x(n)-x))
Par delta2,le second membre de l'inegalite ci-dessus
tend vers 0,lorsque n tend vers l'infini et y(n) est
rho-convergente vers y,donc, (I-T)^{-1}est rho-continue.
Aucun commentaire:
Enregistrer un commentaire